Как увеличить теплоотдачу батарей
Можно ли увеличить теплоотдачу радиатора зависит от того, как его рассчитали, и есть ли запас мощности. Если радиатор просто не может выдать больше тепла, то и любые средства регулировки тут не помогут. Но можно попробовать изменитьситуацию одним из следующих способов:
- В первую очередь проверить засорение фильтров и труб. Засоры — встречаются не только в старых домах. Чаще наблюдаются в новых: во время монтажа в систему попадает разного рода строительный мусор, который при запуске системы забивает устройства. Если чистка не дала результатов, переходим к кардинальным мерам.
- Увеличить температуру теплоносителя. Это возможно в индивидуальном отоплении, но очень сложно, скорее невозможно, при централизованном.
- Изменить подключение. Не все типы подключения радиаторов одинаково эффективны, например, обратное боковое дает снижение мощности на 20-25%, также влияет и место установки отопительного прибора. Подробнее о типах подключения батарей читайте тут .
- Нарастить количество секций. Если подключение и установка выбраны оптимальные, а в комнате все равно недостаточно тепло, значит, тепловой мощности отопительного прибора не хватает. Тогда нужно дорастить несколько секций. Как это сделать, читайте тут.
Регулировкой температуру радиатора не поднять
Основной недостаток регулируемых систем состоит в том, что им необходим определенный запас мощности всех приборов. А это дополнительные средства: каждая секция стоит денег. Но за комфорт заплатить не жалко. Если у вас в комнате жарко, жизнь не в радость, также как и в холодной. А регулирующая арматура — универсальный выход из положения.
Устройств, которые могут изменять количество протекающего через отопительный прибор (радиатор, регистр) теплоносителя, много. Есть совсем недорогие варианты, есть имеющие приличную стоимость. Есть с ручной регулировкой, автоматической или электронной. Начнем с самых недорогих.
Пульт управления котлом
Современные котлы автоматизированы: на передней панели каждого котла есть пульт управления. На нем — несколько кнопок, в том числе главные — «включить» и «выключить». С помощью кнопок можно задать котлу режим работы — минимальный, экономный, усиленный. Например, зимой хозяева надолго уезжают из дома, но чтобы система отопления не промерзла, задают котлу минимальный (он же поддерживающий) режим. И котел обеспечивает в доме температуру +5 °С.
Усиленный режим используется тогда, когда дом надо срочно нагреть, скажем, до температуры 20 °С. Нажимаем соответствующую кнопку, устанавливаем терморегуляторы на батареях на 20 °С. Автоматика пускает котел на полную мощность. А когда температура в комнатах достигнет заданного значения, выносные термостаты, установленные в помещении, срабатывают и автоматически включается экономный режим, он же поддерживает нужную температуру. В зависимости от режима работы автоматика подает то больше, то меньше топлива. Кроме того, в систему можно подключить недельный программатор и запрограммировать температуру на любой день.
В автоматическом блоке есть датчики, реагирующие на сбои в работе котла. Они отключают систему в критической ситуации (например, если корпус котла перегрелся или топливо закончилось, или если возникла другая неисправность). Но у автоматики есть и минус: отключается электричество, отключается и автоматика, следом за ней — вся отопительная система. Зато некоторые отечественные котлы работают без электричества, например АОГВ (агрегат отопительный газовый водяной), КЧМ (котел чугунный модернизированный, работает на газе). Если электричество часто отключают, то эту проблему для автоматической системы отопления можно решить двумя способами.
- Поставить аккумуляторы переменного тока, они способны недолгое время (от часа до суток) давать нужный ток.
- Поставить аварийный генератор, он автоматически включается при отключении электричества в сети и дает ток до подачи электроэнергии.
Температурный график подачи теплоносителя в систему отопления
Любая автономная отопительная система имеет одинаковый принцип работы – носитель по трубам подается к теплообменникам (радиаторам, теплым полам), а после отдачи тепла через батареи, ветви нагреваемых полов остывшая вода направляется по обратке к нагревательному оборудованию (котлу на различных видах топлива), где после подогрева снова возвращается в контур.
При обогреве зданий используется несколько иной принцип – остывший носитель из обратки поступает в элеваторный узел, где происходит его смешивание с горячей водой (паром) ТЭЦ, после чего жидкость усредненный температуры направляется в обогревательный контур.
Для того, чтобы при обогреве жилых сооружений не возникало несоответствие между наружной температурой окружающей среды и внутренней, приводящее к слишком холодной или горячей атмосфере в квартирах, в теплосетях предусмотрена функция регулирования параметров теплоносителя. Она может осуществляться тремя способами:
- Количественным, где теплоотдача регулируется изменением объема проходящей по трубам воды в единицу времени, при этом методе подачей управляет встроенный в теплопровод электронасос.
- Качественным – при этом варианте регулируется максимальная температура теплоносителя на ТЭЦ и в котельных, а также в ИТП и ЦТП.
- Комбинированным – одновременным изменением объемных и температурных характеристик теплоносителя.
Обычно к одной теплоподающей магистрали подключено несколько зданий, для качественного погодозависимого управления автоматикой применяют следующие методы:
- Устанавливают в магистраль регуляторы давления, выставляя на них необходимую величину напора.
- Используют в теплопроводе автоматические балансировочные краны с ниппелями для изменения давления.
- Регулируют давление балансировочными кранами вручную с отслеживанием температур обратки.
- Управляют объемом подачи с помощью специального вида запорной арматуры (задвижек).
- Использует регулировку шайбированием – дроссельными диафрагмами на подающем и обратном теплопроводах, в которых изменяют проходное сечение канала.
Следует отметить, что регулирование проводят по среднесуточной температуре окружающей среды, то есть, если днем ее значение -5 °С, а ночью -15 °С, то настройка будет проводиться по усредненному показателю в -10 °С.
Рис. 7 Индивидуальные теплопункты
Пошаговая инструкция регулировки температуры
Чтобы обеспечить комфортные условия пребывания в помещении нужно выполнить некоторые основные действия.
- Изначально на каждой батарее необходимо стравить воздух до того, пока из крана струйкой не потечет вода.
- Затем необходимо отрегулировать давление в батареях.
- Для этого в первой батарее от котла нужно открыть вентиль на два оборота, на второй – на три, и далее по такой же схеме, увеличивая на каждом радиаторе количество оборотов открываемого вентиля. Таким образом, давление теплоносителя равномерно распределится по всем радиаторам. Это обеспечит ему нормальное прохождение по трубам и лучший прогрев батарей.
- В принудительной системе отопления прокачку теплоносителя, контроль рационального потребления тепла помогут осуществить регулировочные вентили.
- В проточной системе хорошо регулируют температуру, встроенные в каждую батарею терморегуляторы.
- В двухтрубной системе отопления можно контролировать не только температуру теплоносителя, но и его количество в батареях с помощью как ручной, так и автоматической систем управления.
Оборудование и его применение
Энергосберегающее оборудование позволяет создавать системы различного назначения и сложности: одно- и двухконтурные, с дополнительными функциями управления насосами или накопления и обработки статистической информации о ходе процесса регулирования. Но за всем этим должен стоять комплексный экономический подход, который включает следующие параметры: учет взаимовлияния объектов и систем теплоснабжения, санитарно-гигиенические требования, комфорт, снижение эксплуатационных издержек, достоверность теплоучета и экономия топливно-энергетических ресурсов. Системы автоматического регулирования включают в себя электронные регуляторы температуры, датчики температуры, электроприводы с импульсным шаговым двигателем, регулирующую и запорно-регулируюшую арматуру. К последней относятся запорно-регулирующие клапаны, смесительные регулирующие клапаны и регулирующие гидроэлеваторы.
Важную роль здесь играют регуляторы температуры, посредством которых осуществляется управление регулирующими звеньями. С 2010 года выпускается регулятор температуры РТ-2010, представляющий собой обновленный и усовершенствованный вариант предшественника РТ-2000А и имеющий дополнительно возможность установки интерфейса RS485; исполнительный механизм для клапанов и элеваторов МЭП-3500, отличающийся от своих предшественников и конкурентов не только конструктивом, но и набором дополнительных функций.
Схема с регулирующим гидроэлеватором очень распространена для объектов, получающих с теплоисточника перегретый теплоноситель. Не допускается применять ее только на объектах с гидравлическими проблемами где перепад давления между подающим и обратным трубопроводом менее 6 метров водяного столба (0,06 МПа). Элеваторы РГ обеспечивают качественное регулирование за счет смещения прямого и обратного теплоносителя. Регулирующий элеватор не требует применения дополнительного насоса, так как одним из элементов его конструкции является струйный насос. Поэтому применение регулирующих гидроэлеваторов, особенно на объектах ЖКХ, снижает монтажные и эксплуатационные расходы и не приводит к нештатным ситуациям при сбоях в электропитании. В аварийных случаях остановка насоса в системе отопления требует неотложных мер, чтобы не допустить замораживания системы. Схема с регулирующим гидроэлеватором лишена этого недостатка и исключаются затраты насоса и на строительно-монтажные работы следовательно значительно ниже.
Для других схем отопления имеется большая гамма запорно-регулирующих клапанов. Если, в соответствии с техническими условиями на объекте установка насоса необходима, то насос может быть установлен на обратном трубопроводе или перемычке. Однако данную схему нельзя применять на теплопунктах, подключенных к ЦТП (график теплоснабжения – 95˚/70˚ С).
Применение запорно-регулирующих клапанов наиболее эффективно в системах автоматического регулирования, допускающих 100%-ное перекрытие подачи теплоносителя. Прежде всего, это – горячее водоснабжение.
Распространены открытые системы ГВС, они сложно поддаются регулировке. По нашему опыту применение двухходовых клапанов не обеспечивает требуемые параметры по температуре горячей воды, обратного теплоносителя и по уровню шумов. Ввиду этого нами предлагаются трехходовые смесительные клапаны КСТ.
На базе энергосберегающего оборудования производим и компактные блочные тепловые пункты, объединяющие в той или иной степени многие схемные решения.
Одним из важнейших направлений, которое в последнее время стало актуальным и востребованным – диспетчеризация объектов регулирования. Так же на базе оборудования предусмотрена возможность реализации подобных систем. Разработаны и широко используются регуляторы температуры РТ-2010, РТ-2000А, которые снабжены интерфейсом RS232 (RS485), по средствам которого имеется возможность удаленного управления систем регулирования.
На сегодняшний день на базе регуляторов уже смонтированы и запущены системы диспетчеризации, включающие кроме регулирования (регуляторы температуры) еще и учет (теплосчетчики).
Разработанные исполнительные механизмы клапанов МЭП-3500 могут снабжаться токовым выходом, дополнительными релейными выходами для определения положения механизма. Это существенно выделяет этот привод на фоне конкурентов. Установка в привода МЭП-3500 интерфейса RS485 позволяет включить их в общую систему диспетчеризации на ряду с регулятором температуры и счетчиком. К реализации подобного проекта уже проявляется интерес со стороны организаций, занимающихся разработкой контроллеров диспетчерского контроля и сбора данных с объектов.
Регуляторы температуры отопления модельный ряд и цены
Сразу оговоримся, что производителей есть очень много и рассматривать каждого из них мы не намерены. Поговорим только о самых популярных моделях.
Теплолюкс MCS 300
- Дистанционный контроль и управление нагревом теплого пола через Интернет
- Управление с одного мобильного устройства всеми тёплыми полами в квартире, загородном доме или на даче. Замените классические настенные терморегуляторы на MCS 300 — и управляйте комфортом с экрана смартфона.
- отдельный режим работы для каждого термостата
- программирование событий для каждого помещения в течение суток, дней недели
Модель Computherm Q7, также электронного типа, с температурным диапазоном в +5 – +35 С, стоит порядка 1400-1800 рублей.
Цена 1400-1800 рублей.
Регулятор температуры – Veria Control Т45
Более дорогой регулятор – Veria Control Т45, диапазон у него такой же, как у предыдущей модели.
Цена 4300-4400 рублей.
Механический регулятор температуры отопления Terneo RTP
Механические регуляторы стоят дешевле. К примеру, модель Terneo RTP с температурным диапазоном в +10 – +40 C.
Цена 1050-1100 рублей.
Хотя есть и более дорогие механические приборы. Так, Legrand Etika 672630 стоит целых 7750-10600 рублей.
Как видим, за качество всегда приходится платить больше, а наш случай – не исключение. Но отметим, что более простыми и, соответственно, более дешевыми являются все же механические модели. А теперь выясним, как правильно установить регулятор температуры отопления.
Хотите узнать больше про терморегуляторы на радиатор отопления ?
Наша инструкция по монтажу и большой обзор моделей с их техническими характеристиками Подробнее тут
Как можно регулировать температуру батареи отопления?
В частных домах и квартирах, довольно часто возникает такое явление, как разница в уровне прогрева радиаторов, подключенных к системе отопления. Поэтому жильцы вынуждены мириться с некомфортными условиями для жизни, ведь температура в ванной комнате, может значительно отличаться от аналогичного показателя в спальне или в гостиной. Особенно характерна такая проблема для собственников, использующих автономное отопление в домах и квартирах.
Избежать распространенных проблем с системой обогрева домовладельцам поможет грамотная установка такого прибора, как регулятор для батареи отопления, который спроектирован для контроля температуры радиатора. Современные регуляторы температуры для батарей отопления представлены широким ассортиментом моделей и могут использоваться собственниками жилья для оптимизации системы отопления, снижения затрат на энергоносители и поддержания оптимального температурного режима в каждой комнате дома.
Классификация терморегуляторов
Общепринятой классификации не существует, поэтому попробуем разделить терморегуляторы для системы горячего водоснабженияусловно.
По принципу действия управляющих систем
- Пневмо- или гидромеханические, прямого действия. Это самые простые регуляторы. В них используются сильфоны, наполненные жидкостью, газом изменяющими свой объем в зависимости от температуры. Сильфон при этом удлиняется или укорачивается и приводит в действие исполнительный механизм. Так работают и регуляторы на батареях отопления.
Устаревшая система, но благодаря простоте врезки используется до сих пор. Еще одним достоинством таких регуляторов является их независимость от электропитания, которое просто им не нужно. Блок управления у них чаще всего тоже отсутствует.
- Пневмогидромеханические с командными трубопроводами непрямого действия. В них тоже чаще всего используются сильфоны датчики.Но для передачи и усиления сигнала от них используются импульсные трубопроводы и давление сетевой воды. В отличие от предыдущей разновидности могут работать на более мощных системах ГВС с трубопроводами большого давления.
- Электромеханические. В них исполнительные устройства уже с электрическим приводом (двигатель или соленоид) и имеется бок управления. Для связи их с датчиком могут устанавливаться промежуточные реле.
- Электронные. Наиболее распространенная на сегодня разновидность. В них работой системы управляет электронная схема. Он может быть аналоговой (почти не встречается) или цифровой. Современные терморегуляторы для горячего водоснабжения обычно включают в свою электронную схему микроконтроллеры и благодаря программному управлению их очень легко перенастраивать.
По схеме установки терморегуляторов
Схемы установки регуляторов определяются врезками датчиков и исполнительных устройств. Блок управления, если он есть, как и понятно, монтируется в любом удобном месте.
По месту врезки датчика
Есть несколько вариантов:
- Врезка на выходе горячей воды из теплообменника. Это наиболее распространенный способ, он прописан почти во всех руководствах по эксплуатации терморегуляторов. Тем более второй нижеописанный способ невозможен при системе ГВС без рециркуляции, так как обратка там отсутствует. Недостаток в том, что нужно учитывать остывание на пути к потребителю и немного завышать температуру настройки.
- Врезка на обратке трубопроводов горячей воды. Способ применяется редко, но только он может обеспечить соответствие заданной температуры на всех точках разбора воды.
- Врезка на подаче сетевой воды. Используется пи установке простейших регуляторов, в которых исполнительное устройство находится в одном корпусе с датчиком. Врезка на подаче обычно применяется когда теплоноситель и горячая вода в бойлере движутся противотоком и температура последней на выходе почти равна температуре подачи.
- Врезка на обратке сетевой воды. Используется если в бойлере вода и теплоноситель движутся в одном направлении, в этом случае горячая вода на выходе будет нагрета до температуры обратки.
По местам врезки исполнительных устройств
Существуют четыре схемы установки исполнительных устройств терморегуляторов:
- Двухходовое (кран задвижка вентиль и т.п.) исполнительное устройство монтируется на трубопроводах сетевой воды подкаченной к бойлеру. Исполнительное устройство перекрывает сечение обратки или подачи. Это простейшая схема врезки наиболее часто используемая.
- Исполнительное двухходовое устройство устанавливается на байпасе сетевой воды перед бойлером и, при открытии за счет перепуска части потока мимо, уменьшает поток через теплообменник. Так врезают реже всего.
- Врезается трехходовой кран или подобная ему арматура с приводом. Он одновременно перепускает часть потока через байпас и прижимает подачу на теплообменник. Самый выгодный вариант, так как обеспечивает эффективное регулирование и минимально влияет на режимы других узлов отопительной сети.
- Два двухходовых запорных устройства устанавливаются на подаче или обратке теплоносителя и байпасе. Работает система точно так же как и с трехходовым краном (являясь его имитацией). Требует более сложной схемы управления.Схема применяется редко.
Дополнительно можете просмотреть видео в этой статье, где рассказываться о подобных системах. Дальше разберем несколько промышленно выпускаемых и используемых на сегодняшний день терморегуляторов, а также одно устройство для самостоятельной сборки.
Система регулирования отопления А создана для решения следующих проблем
- • неэффективное использование энергоресурсов в зданиях медучреждений, гостиницах, административных центрах и пр.,и ,как следствие, отсутствие функции экономии;
- • изменение температуры в помещении всего на 1 C˚ увеличивает теплопотребление на 5%;
- • создание неблагоприятных условий проживания в помещениях;
- • не выполнение требований законодательства по температурным нормам;
- • меньший срок службы оборудования, за счет повышенной нагрузки;
- • увеличенные затраты при децентрализованном управлении.
Как работает система
Термоэлектрический привод (1) регулирует подачу горячей воды в радиаторе. Он подключается к комнатному коммуникатору-регулятору (2). Комнатный коммуникатор-регулятор имеет встроенный датчик температуры и влажности (+ можно подключить до 3-х выносных датчиков), отображает текущую температуру в помещении и управляет термоэлектрическим приводом* для поддержания заданного температурного режима. В него встроен радиотерминал «ZETA», который обеспечивает беспроводную передачу данных в диспетчерский пункт управления отоплением.
*Один коммуникатор-регулятор обеспечивает управление до четырех термоэлектрических приводов.
(1) (2)
Особенности системы регулирования отопления «А+»
Централизованное управление отоплением
Централизованное дистанционное управление отоплением всего здания с одной точки, учитывая состояние и работу каждого из устройств. Возможность управления до 65 тыс. точек регулирования отопления.
Беспроводная
Обмен информацией между устройствами по радиоканалу, работающему на нелицензируемых радиочастотах и сверхнизких мощностях. Самоорганизующаяся сетьс ретрансляцией сигнала.
Управление системой с мобильного устройства/планшета
Возможность управления с помощью Wi-Fi посредством мобильных устройств (телефон, планшет) для индивидуальной настройки температуры потребителем в конкретном месте.
Простой монтаж, быстрый старт
Не требует штробления стен, нет пыли и грязи. Легкое внедрение системы в уже функционирующее здание с законченным ремонтом. Система легко программируема, позволяет выбор оснащения в соответствии с индивидуальными требованиями и пожеланиями заказчика.
Низкие сроки окупаемости
Экономический эффект заметен уже после месяца работы системы. Срок окупаемости всей системы от 2х до 3х летпри текущей стоимости энергоресурсов.
Интеллектуальная
Автоматический анализ и оптимальное управление мощностью отопительных приборов с учетом заданных параметров. Самообучаемость , система адаптируется под условия эксплуатации: типы помещений, мощность отопительных приборов, условия окружающей среды.
Заданное расписание
Индивидуальное программирование.Возможность задавать температурную программупо часам и в зависимости от дня неделив каждом отдельном помещении.
Регулирование онлайн
Круглосуточное удаленное регулирование температуры.Контроль работоспособности системы.Система контроля и предупреждения аварий.
Эффективная
Автоматическое регулирование отопленияв здании — реальная экономия затратна теплоресурсы до 30-40%.
Технические характеристики:
- • Микропроцессорное управление (автономная работа по внутреннему алгоритму, адаптивность и самообучаемость)
- • Встроенный WI-FI модуль для управления посредством мобильных устройств
- • Встроенный радиоканал 868 МГц для связи с центральным пультом управления
- • Второй встроенный радиоканал 433/868 МГц для связи с внутренними блоками управления (выносные температурные датчики, выносной беспроводной пульт управления, датчик открытия окна, беспроводные комнатные терморегуляторы)
- • Измерение и индикация температуры и влажности в помещении
- • Управление до 4-х исполнительных механизмов (термоприводы радиаторов отопления, электроотопительные приборы,теплый пол и т.д.)
- • Напряжение питания 24V DC или 230В AC
- • Четыре выходных канала 24V DC c суммарной мощностью до 35Вт для питания термоприводов
Открытая система отопления
Открытая система отопления
Если выполняется заполнение системы отопления открытого типа в частном доме, то порядок выполнения работ несколько отличается. Особенность заключается в том, что давление в трубах равно атмосферному. Поэтому главным элементом контроля является расширительный бак, установленный выше остальных приборов отопления.
В этом случае порядок заполнения системы отопления следующий:
- Выполняется слив старого теплоносителя и прочистка труб.
- На всех отопительных приборах открывается кран Маевского.
- Поступление жидкости для заполнения системы отопления можно осуществлять через обратную трубу.
- Как только весь воздух выйдет из системы — проверяется уровень воды в расширительном баке. Он должен быть заполнен на 2/3.
Примечательно, что с помощью ручного насоса, применяемого для заполнения системы отопления, можно и добавлять теплоноситель.
Для открытой системы отопления не допускается превышение давления. В противном случае это может привести к неправильному температурному режиму работы.
Экономия тепловой энергии
Сейчас все больше людей задумываются о вопросах энергосбережения. И в этом нет ничего удивительного – зачем переплачивать за отопление, когда на этом можно экономить? Самый простой вариант экономия тепловой энергии – установка счетчиков (узлов учета тепловой энергии). Данный способ применяется уже на протяжении 10 лет и позволяет снизить оплату за тепловую энергию на 20-30 %. Практика показала, что в среднем, установка узла учета тепловой энергии для многоквартирного жилого дома окупается в течение одного отопительного сезона. Если вы уже установили узел учета тепловой энергии и ощутили какой эффект это дает – не останавливайтесь. Можно пойти в этом вопросе дальше. Существует несколько способов снижения потребления энергоресурсов, а как следствие сокращение своих затрат.
Основные способы экономии энергии: автоматическое регулирование температуры теплоносителя в системе отопления и сокращение теплопотерь ограждающих конструкции.
Первый способ экономии энергии, получаемый при установке системы автоматического регулирования, объясняется двумя факторами. Во-первых, автоматическое регулирование позволяет поддерживать оптимальную температуру в помещении, исходя из температуры наружного воздуха, сокращая расход теплоносителя из теплосети в периоды резких колебаний температуры. Это происходит за счет повторного использования части теплоносителя в системе отопления здания, так как для обеспечения необходимой температуры требуется гораздо меньшее количество теплоносителя из теплосетей. Этот вариант подходит для жилых, общественных и административных зданий. Во-вторых, для производственных предприятий, благодаря автоматическому регулированию, мы можем устанавливать необходимую нам температуру теплоносителя в то время, когда помещение не используется (в ночное время, праздничные и выходные дни). Таким образом, происходит сокращение расхода тепловой энергии, а, следовательно – экономия тепловой энергии. Утвержденные нормативы потребления тепловой энергии в настоящее время не отражают реального картины потребления теплоносителя зданиями и являются завышенными.
Установка узла учета тепловой позволяет перейти к расчетам за фактическое потребленное количество энергоресурса, а также заняться снижением его потребления.
Регулирование подачи теплоносителя энергоснабжающей организацией осуществляется не в полном объеме, что приводит к явному перерасходу энергоресурса, а как следствие затрат на отопление.
Наличие хорошо работающей системы автоматизации отпуска тепловой энергии непосредственно в здании, а также правильная организация и наладка системы отопления позволяют значительно снизить потребление тепловой энергии для нужд отопления. При подключении системы отопления здания по зависимой схеме (без ЦТП) затраты на отопление можно сократить до 50 % в переходный период, а при подключении системы отопления по независимой схеме (регулирование на ЦТП) затраты можно снизить на 10-15 % в зависимости от качества регулирования на ЦТП. Также устройство автоматизации отпуска тепловой энергии позволит добиться оптимально комфортных условий внутри жилых помещений, улучшив условия проживания жителей.
Порядок регулирования параметров системы
Прежде всего, для нормального функционирования отопления нужно убедиться, что нагрев всех потребителей происходит равномерно. Если в некоторые радиаторы горячая вода не поступает или происходят перебои с подачей теплоносителя, значит, в контуре скопился воздух, и необходимо его стравить. Если это не происходит автоматически, нужно открыть кран, установленный на батарее, и дождаться момента, когда из нее перестанет выходить воздух, и польется вода.
- Обязательным условием качественного и быстрого нагрева теплоносителя в системе является регулирование давления. Чтобы распределить его по контуру, последовательно открывают краны на входе в радиаторы: первый – на два оборота, последующий – на три, и далее по всему контуру.
- При однотрубном контуре жидкость проходит через все радиаторы и возвращается в стояк. При этом температура жидкости на разных этажах одинакова. Чтобы регулировать нагрев радиаторов, на входе в каждый из них монтируется регулятор;
- В двухтрубном контуре можно устанавливать как ручные, так и автоматические регуляторы, которые располагаются на каждом радиаторе или на подающей трубе;
- Если в многоэтажном доме установлена верхняя подача, и вода, опускаясь вертикально, проходит через радиаторы, регулирование температуры не возможно. Это создает дискомфорт, так как верхние этажи нагреваются сильнее, а на нижних при этом может быть холодно;
- Установив на входе в каждый радиатор обычный вентиль, можно вручную уменьшать или вовсе отключать подачу теплоносителя, что позволит рационально распределять тепло по различным помещениям, а некоторые из них не отапливать.
Установка регулятора температуры отопления пошаговая инструкция
Вначале подготовьте все, что потребуется в работе:
- болгарку или электрический лобзик;
- сантехническую пасту;
- гаечные ключи;
- клуппы для труб.
Все это нужно приготовить заранее, дабы в процессе установки не отвлекаться. Сам монтаж предельно прост – процедура состоит из четырех основных этапов.
Вначале подготовьте батарею к проведению монтажных работ. Отключите ее, слейте всю рабочую жидкость. Если имеет место вентиль, то снимите его.
Отметим, что в системах однотрубного типа в обязательном порядке имеется байпас – специальная перемычка, благодаря которой жидкость будет циркулировать по магистрали даже при отключении одного из приборов. В таком случае вы не сможете нарушить обогрев других помещений в доме.
Монтаж терморегулятора. При этом вы будете использовать резьбовое соединение, причем саму резьбу обязательно следует уплотнить посредством сантехнического льна, заранее пропитав последний краской. Вначале вкрутите устройство в отверстие радиатора, которое предназначается для ввода рабочей жидкости. Не переусердствуйте с нажимом, иначе можете повредить прибор.
Обратите внимание! На клапане вы сможете увидеть маркировку, выполненную в виде стрелки. Следите, чтобы она указывала в том направлении, в котором будет двигаться теплоноситель. Установите термостатический элемент – устройство, определяющее температуру воздуха в комнате
Другой его функцией является контроль работы запорного механизма. Фиксируйте его только горизонтально! Также следите за тем, чтобы тепло, выделяемое батареей, не воздействовало непосредственно на термодатчик
Установите термостатический элемент – устройство, определяющее температуру воздуха в комнате. Другой его функцией является контроль работы запорного механизма. Фиксируйте его только горизонтально! Также следите за тем, чтобы тепло, выделяемое батареей, не воздействовало непосредственно на термодатчик.
Но если по тем или иным причинам горизонтальная установка невозможна, то советуем не делать «как попало», а приобрести специальный прибор с выносным термодатчиком. Такой прибор можно устанавливать и в двух метрах от отопительного радиатора, а порой даже больше.
Есть ряд требований, касающихся установки температурного датчика. Вот они.
- Устройство следует устанавливать минимум в 80-ти сантиметрах от поверхности пола, поскольку холодный воздух, как мы помним из уроков физики, скапливается именно снизу. И если датчик будет контактировать с этим воздухом, то его показания могут быть неточными.
- Не закрывайте термодатчик шторами, мебелью и другими предметами интерьера.
- Избегайте того, чтобы на него воздействовали прямые солнечные лучи.
- Наконец, не допускайте того, чтобы на прибор воздействовали прямые потоки нагретого воздуха, который, стоит заметить, может исходить не только от батареи, но и от разного рода бытовой техники.
Обратите внимание! Если датчик выносной, то его крепление осуществляется скобами
Также важно, чтобы место для монтажа было подобрано правильно
Если будут соблюдены все эти требования, то регулятор температуры отопления будет работать исправно и эффективно.
Настройте термостат и подготовьте его к эксплуатации. Включив систему отопления в первый раз, произведите настройку и калибровку прибора. Делайте это в полном соответствии с инструкцией производителя к конкретной модели, поскольку данный процесс может отличаться для разных устройств. Хотя есть и общее правило: начинать настройку можно исключительно после того, как каждый из отопительных приборов системы хорошенько прогреется.
Как видим, в монтаже регулятора температуры ничего сложного нет. Разобравшись в его устройстве и выполнив все так, как сказано в инструкции, в будущем вы сможете контролировать интенсивность обогрева помещения, благодаря чему энергоресурсы будут расходоваться предельно рационально. А это, в свою очередь, поможет существенно сэкономить на отоплении.
Что собой представляет температурный график системы отопления
Температурный график является одним из важнейших документов для тепловых сетей центрального отопления различных зданий и сооружений, иногда теплоснабжающие организации предоставляют его для утверждения и корректировки в исполнительные органы некоторых городов и поселков.
Стандартная таблица или температурный график системы отопления 95 на 70 (или 150, 130, 120, 105 на 70) включает в себя следующие разделы:
- Температура наружного воздуха. В зависимости от климатического района показатель лежит в диапазоне от +10 (+8 по стандарту) до -40 °С (-28 °С для областей с умеренным климатом).
- Тепловой режим. Определяет стандартное соотношение между подачей и обраткой при самой низкой температуре наружной среды, типовые показатели 150/70, 130/70, 120/70, 105/70, 95/70.
- Температура теплоносителя в трубопроводе подачи. Показывает физическое состояние теплоносителя на входе в здание (ЦТП), в связи с более высокой заполняемостью людьми домов в пятницу и выходные дни параметр в этот период увеличивают на 2 – 5 °С.
- Температурные характеристики теплоносителя, поступающего к потребителю. В центральном тепловом пункте на смесительном оборудовании (элеваторном узле) происходит смешивание рабочей среды от ТЭЦ и обратки, в результате чего тепловой носитель средней температуры направляют в радиаторные теплообменники потребителей.
- Температура обратки. После прохождения теплоносителя по трубам охлажденная вода возвращается обратно в центральный или индивидуальный тепловой пункт, где происходят ее смешивание в элеваторном узле. Жидкость в обратной ветви должна иметь определенную температуру – ее слишком высокое значение приведет к неоправданным теплопотерям и соответственно перерасходу финансовых средств, низкое значение является показателем недостаточного обогрева помещений.
- Иногда в таблицу включают данные о состоянии теплоносителя в системах вентилирования и линиях горячего водоснабжения, связанных с отопительным контуром.
Помимо графика для стандартной двухтрубной отопительной системы применяют аналогичные таблицы для однотрубной разводки.
Рис. 10 Рабочий температурный график для обслуживающего персонала